Новейшие методы обработки

Первые две, особенности ультразвуков делают их ценнейшим средством для дефектоскопии (см. ст. «Что такое дефектоскопия»). Ультразвуки позволяют заглянуть далеко в глубь металла. Многие слышали об ультразвуковом микроскопе. Он значительно увеличивает и позволяет рассматривать предметы, скрытые под толстым слоем непрозрачного вещества (ем. т. 3, ст. «Звук и ультразвук»). Ультра звуковой контроль широко применяется в металлургии, машиностроении и в других отраслях техники.
Но применение ультразвука не ограничивается дефектоскопией. Зная скорость его распространения и поглощения в теле, можно судить о плотности, вязкости, упругости и других важных показателях металлов, пластических масс, каучука, стекла и т. п.
Ультразвуком контролируют жидкие тела: определяют их концентрацию, ход реакций, находят посторонние примеси. И потому его сейчас применяют в химической, лакокрасочной, фармацевтической, пищевой, нефтеперерабатывающей промышленности.
Третью важную особенность ультразвука - его большую удельную мощность - используют для различных способов воздействия на материал. Гипс, графит, медь, серебро измельчаются ультразвуком. Его используют для сверления вольфрама, молибдена, керамики стекла и других твердых материалов, для мойки я обезжиривания деталей в машиностроении, для удаления окисной пленки при паянии. Смешать обычно не смешивающиеся вещества — например воду с бензином, с ртутью, с маслом — и получить эмульсию тоже можно с помощью ультразвука. Ультразвуком очищают паровые котлы от накипи, ускоряют дубление кожи, красят ткани, пастеризуют молоко, стирают белье, сверлят зубы при лечении и т. д.
Впервые ультразвук стали применять в военной технике во время империалистической войны 1914—1918 гг. В Англии и Франции напряженно искали эффективные средства борьбы с немецкими подводными лодками. Тогда знаменитый французский физик П. Ланжевен предложил применить ультразвук для гидролокации. Под водой посылали ультразвуковой сигнал. Если на его пути попадался предмет с отличной от воды плотностью, то звук отражался и возвращался как эхо к своему источнику. Зная скорость распространения звука в воде и время прохождения его до обнаруженного предмета и обратно, нетрудно определить расстояние до предмета. Гидролокаторы и сейчас широко применяют в морском деле. О применении ультразвука в различных областях техники можно рассказывать еще много.
Как же получают ультразвуки? Если необходимо возбудить ультразвуковые колебания в воздухе или в газах, то обычно применяют механический способ. Для излучения ультразвука в ЖИДКОСТИ чаще всего служит магнитострикционный способ. Если же необходимо возбудить ультразвуковые колебания в твердых телах, то для этого наиболее подходит пьезоэлектрический способ.
К механическим способам относятся свистки, сирены и т. д. Устройство их известно всем. Но не все знают об интенсивности звука в них. Оказывается, кусочек металла, внесенный в звуковое поле сирены, нагревается докрасна за минуту; частота колебаний в механических излучателях достигает 500 кгц.
Магнитострикция (от греческого слова «магнетис» и латинского слова «стриктус» — сжатый, натянутый) означает изменение формы в размеров тела при намагничивании. Если к намагниченному стержню подвести переменный электрический ток, то стержень начнет вибрировать. Изменяя подводимое напряжение, изменяют и частоту колебаний стержня. Так получают колебания ультразвуковой частоты. Для этого не обязательно брать стержень. Можно применить и трубу, а еще лучше — пакет из тонких пластин.
В 1880 г. французский ученый Пьер Кюри, впоследствии прославившийся работами по радиоактивности, вместе со своим братом Полем Жаном Кюри открыл пьезоэлектрические явления («пьезо» по-гречески - давлю). Они установили, что если некоторые кристаллы ( пример, кварца, турмалина) подвергать сжатию или растяжению, то на их гранях появляются электрические заряды. Ныне известно более 1200 таких кристаллов.
Оказалось, что пьезоэлектрический эффект обратим, т. е. такие кристаллы, помещенные в электрическое поле, будут сжиматься и растягиваться с частотой, соответствующей частоте смены знаков электрических зарядов. Таким образом, пьезокристаллы становятся излучателями ультразвуков.
Чтобы пьезокристаллы излучали ультразвук, из них под определенным углом к их оси вырезают пластинку. Кварцевая пластинка, например, на частоте колебаний в 1 млн. гц дает звук такой мощности, что человек немедленно оглох бы, если бы смог его услышать.
Несколько лет назад советский ученый Б. М. Вул обнаружил, что титанат бария обладает высокими пьезоэлектрическими свойствами. Для получения ультразвука той же мощности, что и на кварцевой пластинке, к пластинке титаната бария можно приложить в 10 раз меньшее электрическое напряжение. Применение этих кристаллов теперь быстро растет.
Пьезоэлектрические пластинки применяют и в качестве генераторов и в качестве приемников ультразвука. Они составляют основу ультразвуковой техники.